Implementation of T_{0} calculation with RS algorithm

FABIO CRESPI - University of MILANO / INFN MILANO

TO determination with RS algorithm (Only very preliminary tests):

> Time shifted signals have been added in the basis

> From the decomposed signal we get:

- r (radial coordinate)
- N (number of interactions / segment)
- t_{0} (time shift of the basis elements that better reproduce the input signal)

Simulated Single Interaction Events (1):

01 interaction, $E_{\gamma}=500 \mathrm{keV}, 1 \mathrm{MeV}, 2 \mathrm{MeV}$
O MGS signal basis + 10 keV FWHM gaussian noise + electronic chain response
o position is randomly chosen inside the detector volume
o Input signals are perfectly aligned (signal starting time $t_{s}=0$)

Simulated Double Interaction Events (2):

o 2 interaction in 1 detector segment, $E_{\gamma}=500 \mathrm{keV}, 1 \mathrm{MeV}, 2 \mathrm{MeV}$
o MGS signal basis + 10 keV FWHM gaussian noise + electronic chain response
o position is randomly chosen inside the detector volume
o Input signals are perfectly aligned (signal starting time $t_{s}=0$)

Simulated Double Interaction Events (2):

\square (Preliminary) conclusions and Perspectives:

$>$ Simple tests have been performed on set of simulates events with 1-2 hits per segment
$>$ The width of the t_{0} distributions range from $1-7 \mathrm{~ns}$ depending on:
Gamma Energy
Number of Interactions / segment
CPU power
Even small miss correspondences between the input signal and the reconstructed one can lead to t0 shifts of several ns!
\rightarrow Test on real signals are mandatory to estimate the time resolution that can be reached with RS algorithm [additional effects (matching calculated / real detector position response) can have a relevant impact on the t_{0} calculation performances]
\rightarrow An other technique will be tested: NO adding of time shifted elements in the signal basis, but instead associating to each position in the detector a correction factor determined a priori for the CFD timing

