
NARVAL implementation of a PSA framework

and a NARVAL emulation for code development

Joa Ljungvall

July 10, 2008



Why a PSA framework?

◮ Remove complications of interfacing with Narval/ADF from
the PSA developer to me;)



What does it look like?

◮ Using c++ inheritance - base class PSAFilter

◮ ADF provides the connection to Narval

Base class provides the services of talking to ADF/Narval and some
virtual members to implement for each algorithm to do the work.

1. virtual Int t InitDataContainer() - For loading
databases of pulseshapes, base class provides pointer for this

2. virtual Int t ResetDataContainer() - Maybe we do a
processreset

3. virtual Int t Process() - The actual PSA code goes here



How is it used?

Do something like:

struct GridSearchData {
baseSim *base;

float *metrica;

};

class PSAFilterSimpleGrid : public PSAFilter

{...
Int t Process();

//In here your open your data file etc;

Int t InitDataContainer();

//Here you close data file etc.

Int t ResetDataContainer();

...};



How is it used?

◮ In InitDataContainer() do
...

fDataContainer = new GridSearchData;

.

.

.

((GridSearchData*)fDataContainer)->base = base;



How is it used?

◮ For Process() there are a few things to remember:

1. When called the traces can be found in “classical” short
arrays, *CoreTrace pp and *SegmentTraces pp[36].

2. It should end with a piece of code like:
ahit = new ADF::PSAHit;

ahit->SetE(PtoExp->NetCharge[iii][1]);

ahit->SetX(PtoExp->pto.x);

ahit->SetY(PtoExp->pto.y);

ahit->SetZ(PtoExp->pto.z);

AddHit(ahit);

This to put the hit into the ADF data stream.

If you try this you will find it simple;)



A Narval emulator

Why?

◮ Develop code

◮ Debug your code

◮ Profile your code

What does it offer?

◮ A “linear” Narval topology

◮ 1 producer, X filters, 1 consumser

◮ Can be debugged unsing standard c/c++ tools on any
platform



- how?



- how?

From a more technical point of view:
{
void (*process block filter[MACTORS-2])(...);

void *actors [MACTORS];

.

.

process block filter[ii-1] = dlsym(actors[ii],

"process block");

.

}


