

Determination of T0 with Neural Nets

Michael Schlarb, TU München 7th AGATA Week, Uppsala

T_o with Neural Nets

- Need good timing information for PSA
 - 10 ns Sampling
- Constant Fraction has ~ 15 ns FWHM
 - T_{CF} good first guess, not good enough for PSA
 - Corresponds to 5-8% noise (50-80 keV @1 MeV)
- Use Neural Nets for better precision
 - Use Core Signal
 - Take 5 samples before and 10 samples after T_{CFI}
- First Test without noise
 - Single hidden layer seems enough
 - Encouraging results

Neural Networks: From Wetware to Software

Building Blocks

- Neurons
 - Process the information
- Axons
 - Sends result to all connected neurons
 - ~4 km per mm³
- Dendrites
 - Pre-process the input from the axon

Neural Networks: From Wetware to Software

- Several Types of NN
- Feed-forward NN:
 - Normalized Input
 - Neurons arranged in layers
 - Connected to all neurons from previous layer
 - Each connection has a weight
 - Activation of Neuron I

$$A_{i} = f\left(\sum_{j=0}^{j=n} w_{ij} \cdot A_{j}\right)$$

$$f(x) = \tanh(x)$$

$$f(x) = \frac{1}{1 + e^{-x}} \left(Sigmoid\right)$$

Things to remember

- Curse of Dimensionality
 - Keep input data size small
 - Pre-process the data
- Size of Network
 - Large network only memorizes training data
 - Smaller network needs to generalize
- Training
 - Dataset with known output
 - Adjust weights to reduce errors
 - Backpropagation, Levenberg-Marquardt
 - FIPS, Genetic Algorithm
- Validation
 - Use different dataset with known output
 - Calculate the errors

Summary

- First Tests with Neural Networks succesfull
 - Resolutions are good enough to not having to do it in PSA Code
- Think about other ways of pre-processing
- Include variable amount of noise with data