

Status and perspectives of the GANIL Campaign

2016 ACC meeting - Venice

The GANIL Campaign

Neutron and charged particles detected in NEDA/DIAMANT

Charged particles detectors for Coulex and nucleon transfer

Separated and tagged by their decay in the VAMOS GFM *Recoils identification by the VAMOS magnetic spectrometer*

Post-accelerated RIBfrom SPIRAL1F

Fusion-evaporation

Multinucleon Transfer and fusion-fission

The physics case of AGATA@GANIL is the in-beam γ -ray spectroscopy of exotic nuclei populated by heavy-ions collisions at the Coulomb Barrier

The GANIL Campaign organization

The AGATA campaign at GANIL is approved between 2014 and 2019

The GANIL campaign is organized in different sub-campaigns associated to a main setup

They are organized between the ACC, the GANIL management and the campaign manager (S. Lenzi from the University of Padova)

Each GANIL PAC has a "PrePac" workshop with a specific call : AGATA Collaboration Meeting

- ✓ 1st PAC in 2014 : VAMOS (10 experiments approved)
- ✓ 2nd PAC in 2015 : VAMOS || NEDA (10 experiments approved)
- ✓ 3rd PAC in 2016 : NEDA (6 experiments approved)

Multinucleon Transfer fusion-fission 2014-2017

Full reconstruction over the whole acceptance Mass resolution ~ 1/220Z identification up to Z= 62 H. Savajols et al, NIM B 204 (2003) 146-153 S. Pullanhiotan, et al NIM A, 593(2008) M. Rejmund et al, NIM A 646 (2011) 184–191 M. Vandebrouck et al, NIM A 812 (2016) 112–117

Laboratoire commun CEA/DSM SDIG 2 CNR5/IN2P3

Lifetime measurement at AGATA@GANIL

Laboratoire commun CEA/DSM SDIA 2 CNRS/IN2P3

Not simulation, Real in-beam data

To be completed by the FastTiming method with the use of LaBr3 and the continus 2D DSAM**

Physics cases of the 1st run AGATA at GANIL : Nuclear structure in the vicinity of doubly magic nuclei 2015 Run • p-n, n-n correlations in the vicinity ¹³²Sn;¹⁰⁰Sn, ⁶⁸Ni, ⁴⁸Ca • Terra-incognita ²⁰⁸Pb • Tensor force and monopole migration around ⁷⁸Ni • 3 body forces G. Georgiev et al; 2⁺ lifetimes and g factor ^{204,206,208}Hg: 17th -29th July C. Domingo-Pardo et al ; 4⁺, 2⁺ lifetime in ⁹⁴Ru and ⁹⁶Pd ²⁰⁸Ph J. J. Valiente Dobon et al 4⁺, 2⁺ lifetime P. R. John et al ; Shape transition in W isotopes: $^{190}\mathrm{W}$ and $^{192}\mathrm{W}$ in ^{106,108}Sn spectroscopy and fast timing ¹⁰⁰Sn A. Navin et al ; $i_{13/2}$ single particle state in ¹³³Sn and high spin 132Sn in ¹⁰⁸Zr D. Verney et al; lifetime measurement in ⁸³Ge. 68Nj ⁷⁸Ni G. Duchêne et al; ⁸⁰Zn and ⁸²Ge highest spin structures J. Ljungvall et al ; 2⁺, 4⁺ 6⁺ lifetime and g-factor in ^{62,64,66}Fe ⁴⁸Ca A. Lemasson et al : spectroscopy of ^{39,41,43}S

S. Leoni et al ; Lifetime in n-rich C and O isotopes: test of the three body forces

Liftetime measurement in the ¹⁰⁰Sn region

z				105Te	106Te	107Te	108Te	109Te	110Te	IIITe	112Te	113Te	114Te	115Te	116Te	117Te	118Te
			10356	10 ⁴ Q	value	-8	MeV	-3	MeV	b	111Sb	112Sb	113Sb	114Sb	115Sb	116Sb	117Sb
o	100Sn	101 Sn	102Sn	103Sn	104Sn	105Sn	106Sn	1075n	1085n	109Sn	1105n	111Sn	112Sn	113Sn	114Sn	115Sn	116Sn
	99In	100In	1011n	102In	103In	104In	105In	106In	107In	108In	109In	110In	lllIn	112In	113In	114In	115In
48	9 Cd	99Cd	100Cd	101Cd	102Cd	103Cd	10400	LOSCd	106Cd	107Cd	108Cq	109Cd	110C9	111C9	112Cd	113Cd	114Cd
	9' Ag	98Ag	99Ag	100Ag	101Ag	102Ag	103Ag	104Ag	105Ag	106Ag	107Ag	108Ag	109Ag	110Ag	IIIAg	112Ag	113Ag
46	9 Pd	97Pd	98Pd	99Fd	100Pd	101Pd	102Pd	103Pd	104Pd	105Pd	106Pd	107Pd	108Pd	109Pd	110Pd	IIIPd	112Pd
	95Rh	96Rh	97Rh	98Rh	99Rh	100Rh	101Rh	102Rh	103Rh	104Rh	105Rh	106Rh	107Rh	108Rh	109Rh	HORH	IIIRh
44	94Ru	95Ru	96Ru	97Ru	98Ru	99Ru	100Ru	101Ru	102Ru	103Ru	104Ru	105Ru	106Ru	107Ru	108Ru	109Ru	110Ru
	50		52		54		56		58		60		62		64		N

Multinucleon-transfer reactions in the neutron-deficient side to populate the Sn/Ru isotopes and measure the lifetimes of the 2^+ and 4^+ states

 \rightarrow See R. Perez-Vidal's and M. Siciliano's presentations

²⁰⁸Pb region : \rightarrow See D. Ralet's talk

Spectroscopy in the ⁶⁸⁻⁷⁸Ni region

 \rightarrow See J. Lungvall's and J. Dudouet's presentations

CNRS/IN2P3

laboratoire commun CEA/DSN

Physics cases for the 2nd run (2016-2017) : nuclear structure in the vicinity of doubly magic nuclei, N=Z nuclei, astrophysic and deformation

J. Nyberg et al. : Studies of excited states in ^{102,103}Sn to deduce two-body neutron interactions, single-particle energies and N=Z=50 core excitations

M. Doncel et al. :Production test for spectroscopy and lifetime measurements in the A=78 isobaric triplet using multi-nucleon transfer reactions

100**Sn**

⁸Ca

S. Lenzi et al. : Effects of Isospin Symmetry Breaking in the A=63 mirror nuclei

2nd PAC 27th-28th Avril 2015

A. Jungclauss et al. :Exploration of alpha-cluster structures in heavy nuclei: The unique case of 212 Po (208 Pb + α)

P. Regan et al. : Understanding Nuclear Collectivity Approaching the π -v Valence Maximum: Transition Quadrupole Moments in ^{166,168}Dy.

P. R. John et al ; Shape transition in W isotopes: ¹⁹⁰W and ¹⁹²W spectroscopy and fast timing

A. Navin et al ; $\,i_{13/2}\,$ single particle state in $^{133}\rm{Sn}$ and high spin in $^{108}\rm{Zr}$

W. Korten et al. :Shape coexistence and triaxiality in neutronrich fission fragments in the mass A=100-120

I. Celikovic et al. :Evolution of collectivity around N=40: lifetime measurements in ^{73,75}Ga

C. Fransen et al. : Evolution of the shell structure in the region of neutron-rich Ti isotopes

 ^{132}Sn

A. Lemasson et al : spectroscopy of ^{39,41,43}S

P. Bednarczyk et al. : Investigation of a high spin structure in ⁴⁴Ti

C. Michelagnoli et al . : The lifetime of the 7.786 MeV state in ²³Mg as a probe for classical novae models

S. Leoni et al ; Lifetime in n-rich C and O isotopes: test of the three body forces

78Ni

Physics cases for the 2nd run (2016-2017) : nuclear structure in the vicinity of doubly magic nuclei, N=Z nuclei, astrophysic and deformation

A. Jungclauss et al. : Exploration of alpha-cluster structures in heavy

P. Regan et al. : Understanding Nuclear Collectivity Approaching

the π -v Valence Maximum: Transition Quadrupole Moments in

nuclei: The unique case of 212 Po (208 Pb + α)

J. Nyberg et al. : Studies of excited states in ^{102,103}Sn to deduce two-body neutron interactions, single-particle energies and N=Z=50 core excitations

M. Doncel et al. :Production test for spectroscopy and lifetime measurements in the A=78 isobaric triplet using

multi-nucleon transfer reactions

S. Lenzi et al. : Effects of Isospin Symmetry Breaking in the A=63 mirror nuclei

208**D** 2016's run : 4 experiments P. R. John et al ; Shape transition in W isotopes: ¹⁹⁰W and ¹⁹²W spectroscopy and fast timing ¹⁰⁰Sn A. Navin et al ; $i_{13/2}$ single particle state in ¹³³Sn and high spin 132Sn in ¹⁰⁸Zr W. Korten et al. :Shape coexistence and triaxiality in neutronrich fission fragments in the mass A=100-120 78Ni I. Celikovic et al. :Evolution of collectivity around N=40: lifetime measurements in 73,75Ga C. Fransen et al. : Evolution of the shell structure P. Bednarczyk et al. : Investigation of a high spin structure in ⁴⁴Ti in the region of neutron-rich Ti isotopes ⁴⁸Ca A. Lemasson et al : spectroscopy of ^{39,41,43}S C. Michelagnoli et al . : The lifetime of the 7.786 MeV state in ²³Mg as a probe for classical novae models

^{166,168}Dv.

S. Leoni et al ; Lifetime in n-rich C and O isotopes: test of the three body forces

2016 run

□ 10 Triple Clusters and 1 Double Cluster
(32 caps ε~5% after tracking @1.3 MeV nominal)
□ 32 channels operational with phase1 (ATCA) and advanced phase 1 (GGP) electronic chains + 1 spear
(1184 hpGe Channels)
□ DAQ infrastructure is running smoothly
(last experiment ~40T)

 \rightarrow See A. Korichi's talk

\rightarrow This is a great success of the AGATA collaboration

2016 run

C. Fransen et al. : Evolution of the shell structure in the region of neutron-rich Ti isotopes

✓ 29 capsules running (limited by the availability of FEBEE)
 ✓ Plunger target issues which has limited the beam intensity
 ✓ ^{50,52,54}Ti lifetime measurement

2016 run

laboratoire commun CEA/DSM SPIG 2 CNRS/IN2P3

I. Celikovic et al. :Evolution of collectivity around N=40: lifetime measurements in ^{73,75}Ga

A. Navin et al ; $i_{13/2}$ single particle state in ¹³³Sn and high spin in ¹⁰⁸Zr

C. Michelagnoli et al . : The lifetime of the 7.786 MeV state in ²³Mg as a probe for classical novae models

✓ 29 caps running (ATC7 out)
 ✓ ⁷⁶Ge, Plunger target issues which has limited the beam intensity
 ✓ ⁷⁵Ga lifetime measurement

✓ 32 caps running

✓ Some issues with the 2^{nd} arm

 \checkmark Delayed gamma with EXOGAM at the focal plane

 \checkmark Ran very smoothly and very promising on-line spectra

✓ 32 caps running
✓ Additionnal DSSD in the chamber
✓ DSAM

2017 run LaBr3 campaign – VAMOS backlog

FATIMA-PARIS detectors coupled to AGATA and VAMOS (4 experiments)

Mechanical integration
Electronic coupling
Detailed simulations to evaluate the impact on AGATA performances'
Magnetic shielding

2018 run NEDA campaign

8 experiments approved using AGATA+NEDA (+DIAMANT) (+LaBr3) (+plunger)

Design phase for the mechanical integration (STFC-IPNL-GANIL)

Electronic Development in progress

Detailed planning for the 2017 installation and 2018 to be clarified when GANIL schedule is clarified

- 0 J. Nyberg et al. : Studies of excited states in ^{102,103}Sn to deduce two-body neutron interactions, single-particle energies and N=Z=50 core excitations
- o S. Lenzi et al. : Effects of Isospin Symmetry Breaking in the A=63 mirror nuclei
- 0 M. Bentley et al. : Prompt gamma/proton spectroscopy in ⁶⁵As isospin symmetry at the limits of proton-binding
- B. Cederwall et al. : Search for isoscalar pairing in the N=Z nucleus ⁸⁸Ru
- o B. Fornal et al. : Gamma decay from near-threshold states in ¹⁴C: a probe of clusterization phenomena in open quantum systems
- o E. Clément et al : Shell evolution of neutron-deficient Xe isotopes: Octupole and Quadrupole Correlations above ¹⁰⁰Sn
- A. Boso et al :Isospin Symmetry Breaking and Shape Coexistence in Mirror Nuclei ⁷¹Kr-⁷¹Br
- \circ M. Palacz et al : Purity of the g_{9/2} configuration based on lifetime measurements and energies of excited states in ⁹⁴Pd

2019-20XX run *MUGAST-GFM*

 \checkmark The AGATA collaboration is operating 32 capsules in the array at GANIL

✓ The second AGATA run at GANIL is almost completed

 \checkmark The physics program is rich, ambitious and broad

✓ The AGATA campaign will keep us busy until 2019 (at least)

✓2017 : LaBr3 campaign ✓2018 : AGATA-NEDA campaign